Magazin

Wie stabil ist Uthever® NMN?

Uthever NMN Effepharm MoleQlar

Regelmäßig stellen uns Kunden die Frage: Wie soll ich Uthever® NMN lagern? Wie stabil ist es bei Zimmertemperatur? Muss ich es im Kühlschrank aufbewahren?

In diesem Beitrag möchten wir auf genau diese Fragen eingehen und Ihnen gleichzeitig zeigen, dass Uthever® NMN mit das stabilste Produkt auf dem Markt ist.

Stabilitätstest – Um die Stabilität zu testen, wurden folgende Bedingungen vorausgesetzt:

1. Verpacktes NMN in doppelwandigen Polyethylen Beuteln.

2. Lagerung bei 40℃ 

3. Lagerung bei 75% Luftfeuchtigkeit

Wir sprechen hier also von einer verhältnismäßig hohen, sommerlichen Temperatur in Deutschland und einer typischen Luftfeuchtigkeit bei Raumluft.

Drei unterschiedliche Chargen von Uthever® NMN wurden unter diesen Bedingungen nach einem Monat, nach zwei Monaten, nach drei Monaten und nach sechs Monaten auf Reinheit und Feuchtigkeit geprüft.

Die Ergebnisse staffeln sich wie folgt:

Stabilität Uthever(TM) NMN

Wie Sie sehen können hat Uthever® NMN selbst nach sechs Monaten Lagerung unter verhältnismäßig extremen Bedingungen, im Schnitt gerade einmal 0,1% seiner Reinheit eingebüßt.

Die Lagerung bei Zimmertemperatur ist also absolut unbedenklich.

Verwendete Quellen

Superman und die Vitamin B3-Familie

Denu, J. M. (2007). Vitamins and aging: pathways to NAD+ synthesis. Cell129(3), 453-454.

OECD, P. G. D. (2013). What future for health spending?. OECD Economics Department Policy Notes, No. 19.

Uddin, G. M., Yongson, N., Sinclair, D., & Morris, M. (2015). Effects of High Fat Diet Induced Obesity on Mitochondrial Biogenesis and Function–Impact of Exercise or Nicotinamide Mononucleotide (NMN). The FASEB Journal29(1_supplement), 777-8.

Zhang, H. et al.  (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science352(6292), 1436-1443.

Hwang, E. S., & Hwang, S. Y. (2018). Cellular NAD⁺ level: a key determinant of mitochondrial quality and health. Annals of Geriatric Medicine and Research21(4), 149-157.

Kirkland, J. B., & Meyer-Ficca, M. L. (2018). Niacin. In Advances in food and nutrition research (Vol. 83, pp. 83-149). Academic Press.

Irie, J. et al. (2020). Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine journal67(2), 153-160.

 

NR vs. NMN – blaue Pille vs. rote Pille

Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. I. (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell metabolism14(4), 528-536.

Cantó, C. et al. (2012). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell metabolism15(6), 838-847.

Chi, Y., & Sauve, A. A. (2013). Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Current Opinion in Clinical Nutrition & Metabolic Care16(6), 657-661.

Mills, K. F. et al. (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell metabolism24(6), 795-806.

Trammell, S. A. et al. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature communications7(1), 1-14.

Wang, X., Hu, X., Yang, Y., Takata, T., & Sakurai, T. (2016). Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain research1643, 1-9.

Zhang, H. et al.  (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science352(6292), 1436-1443.

Airhart, S. E. et al. (2017). An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PloS one12(12).

Hwang, E. S., & Hwang, S. Y. (2018). Cellular NAD⁺ level: a key determinant of mitochondrial quality and health. Annals of Geriatric Medicine and Research21(4), 149-157.

Grozio, A. et al. (2019). Slc12a8 is a nicotinamide mononucleotide transporter. Nature metabolism1(1), 47-57.

Tarantini, S. et al. (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox biology24, 101192.

Irie, J. et al. (2020). Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine journal67(2), 153-160.

Podcast David Sinclair

 

Ist Altern eine Krankheit?

Podcast UIBK

Weltbericht über Altern und Gesundheit (WHO)

Specht, J., Egloff, B., & Schmukle, S. C. (2011). Stability and change of personality across the life course: The impact of age and major life events on mean-level and rank-order stability of the Big Five. Journal of Personality and Social Psychology, 101(4), 862–882.

Gerstorf, D., Hoppmann, C. A., Löckenhoff, C. E., Infurna, F. J., Schupp, J., Wagner, G. G., & Ram, N. (2016). Terminal decline in well-being: The role of social orientation. Psychology and Aging31(2), 149.

Kruse, A. (2017). Lebensphase hohes Alter: Verletzlichkeit und Reife. Springer-Verlag.

https://www.pschyrembel.de/Krankheit/K0C8J

 

Altern ist was man daraus macht

Robine, J. M., Allard, M., Herrmann, F. R., & Jeune, B. (2019). The real facts supporting Jeanne Calment as the oldest ever human. The Journals of Gerontology: Series A74(Supplement_1), S13-S20.

https://www.smithsonianmag.com/smart-news/oldest-person-world-turns-117-180973930/

https://www.7jahrelaenger.de/7jl/magazin/jedes-dritte-maedchen-wird-100-jahre-alt-55020

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/_inhalt.html

https://sz-magazin.sueddeutsche.de/gesundheit/das-ist-ja-der-gipfel-79492

 

Antioxidantien

Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2007). Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. Jama297(8), 842-857.

Lehman-McKeeman, L. D. (2013). Biochemical and Molecular Basis of Toxicity. In Haschek and Rousseaux's Handbook of Toxicologic Pathology (pp. 15-38). Academic Press.

Tsopmo, A., Awah, F. M., & Kuete, V. (2013). Lignans and stilbenes from African medicinal plants. In Medicinal plant research in Africa (pp. 435-478). Elsevier.

Bjelakovic, G., Nikolova, D., & Gluud, C. (2014). Antioxidant supplements and mortality. Current Opinion in Clinical Nutrition & Metabolic Care17(1), 40-44.

Kubo, E., Chhunchha, B., Singh, P., Sasaki, H., & Singh, D. P. (2017). Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Scientific reports7(1), 1-17.

Zhou, J., Ci, X., Ma, X., Yu, Q., Cui, Y., Zhen, Y., & Li, S. (2019). Pterostilbene activates the Nrf2-dependent antioxidant response to ameliorate arsenic-induced intracellular damage and apoptosis in human keratinocytes. Frontiers in pharmacology10.

https://www.aerzteblatt.de/nachrichten/32069/Meta-Analyse-Antioxidative-Vitamine-erhoehen-Sterblichkeit?s=Vitamine

 

Langlebigkeitspfade

Salminen, A., Huuskonen, J., Ojala, J., Kauppinen, A., Kaarniranta, K., & Suuronen, T. (2008). Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing research reviews7(2), 83-105.

Zineldeen, D. H., Uranishi, H., & Okamoto, T. (2010). NF-kappa B signature on the aging wall. Current drug metabolism11(3), 266-275.

Salminen, A., & Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing research reviews11(2), 230-241.

Lamming, D. W., Ye, L., Sabatini, D. M., & Baur, J. A. (2013). Rapalogs and mTOR inhibitors as anti-aging therapeutics. The Journal of clinical investigation123(3), 980-989.

Burkewitz, K., Zhang, Y., & Mair, W. B. (2014). AMPK at the nexus of energetics and aging. Cell metabolism20(1), 10-25.

Cartwright, T., Perkins, N. D., & Wilson, C. L. (2016). NFKB1: a suppressor of inflammation, ageing and cancer. The FEBS journal283(10), 1812-1822.

Kida, Y., & Goligorsky, M. S. (2016). Sirtuins, cell senescence, and vascular aging. Canadian Journal of Cardiology32(5), 634-641.

Wątroba, M., Dudek, I., Skoda, M., Stangret, A., Rzodkiewicz, P., & Szukiewicz, D. (2017). Sirtuins, epigenetics and longevity. Ageing research reviews40, 11-19.

Weichhart, T. (2018). mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology64(2), 127-134.

Stallone, G., Infante, B., Prisciandaro, C., & Grandaliano, G. (2019). mtor and aging: An old fashioned dress. International journal of molecular sciences20(11), 2774.

 

Fasten – Perspektive für ein langes Leben

Longo, V. D., & Mattson, M. P. (2014). Fasting: molecular mechanisms and clinical applications. Cell metabolism19(2), 181-192.

Mitchell, S. J., Bernier, M., Mattison, J. A., Aon, M. A., Kaiser, T. A., Anson, R. M., ... & de Cabo, R. (2019). Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell metabolism29(1), 221-228.

de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N., & Madeo, F. (2014). The search for antiaging interventions: from elixirs to fasting regimens. Cell157(7), 1515-1526.

Longo, V. D., & Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell metabolism23(6), 1048-1059.

Velingkaar, N., Mezhnina, V., Poe, A., Makwana, K., Tulsian, R., & Kondratov, R. V. (2020). Reduced caloric intake and periodic fasting independently contribute to metabolic effects of caloric restriction. Aging Cell19(4), e13138.

Balasubramanian, P., Howell, P. R., & Anderson, R. M. (2017). Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine21, 37-44.